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1. Introduction

Obtaining non-vanishing Higgs µ-terms and setting the scale of these interactions is one

of the most important issues in realistic superstring model building [1]. In this paper,

we present a formalism for computing these terms and explicitly demonstrate, within an

important class of E8 × E8 superstring vacua, that non-vanishing Higgs µ-terms are gen-

erated in the low energy effective theory. The scale of these µ-terms is set by the vacuum

expectation values of a selected subset of vector bundle moduli.

In a series of papers [2 – 4], we presented a class of “heterotic standard model” vacua

within the context of the E8×E8 heterotic superstring. The observable sector of a heterotic

standard model vacuum is N = 1 supersymmetric and consists of a stable, holomorphic

vector bundle, V , with structure group SU(4) over an elliptically fibered Calabi-Yau three-

fold, X, with a Z3 × Z3 fundamental group1. Each such bundle admits a gauge connection

1In [2 – 4] we gave non-trivial checks on the slope-stability of the vector bundle V . Recently, stability of

this bundle was rigorously proven in [5].
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which, in conjunction with a Wilson line, spontaneously breaks the observable sector E8

gauge group down to the SU(3)C × SU(2)L × U(1)Y Standard Model group times an ad-

ditional gauged U(1)B−L symmetry. The spectrum arises as the cohomology of the vector

bundle V and is found to be precisely that of the minimal supersymmetric standard model

(MSSM), with the exception of one additional pair of Higgs-Higgs conjugate superfields.

These vacua contain no exotic multiplets and exist for both weak and strong string cou-

pling. All previous attempts to find realistic particle physics vacua in superstring theo-

ries [6 – 19, 21, 20, 22] have run into difficulties. These include predicting extra vector-like

pairs of light fields, multiplets with exotic quantum numbers in the low energy spectrum,

enhanced gauge symmetries and so on. A heterotic standard model avoids all of these

problems.

Elliptically fibered Calabi-Yau threefolds with Z2 and Z2 × Z2 fundamental group

were first constructed in [23 – 25] and [26, 27] respectively. More recently, the existence

of elliptic Calabi-Yau threefolds with Z3 × Z3 fundamental group was demonstrated and

their classification given in [28]. In [29 – 32], methods for building stable, holomorphic

vector bundles with arbitrary structure group in E8 over simply-connected elliptic Calabi-

Yau threefolds were introduced. These results were greatly expanded in a number of

papers [23 – 25, 33 – 35] and then generalized to elliptically fibered Calabi-Yau threefolds

with non-trivial fundamental group in [25, 36, 26, 27]. To obtain a realistic spectrum, it

was found necessary to introduce a new method [23 – 27] for constructing vector bundles.

This method, which consists of building the requisite bundles by “extension” from simpler,

lower rank bundles, was used for manifolds with Z2 fundamental group in [39, 40, 25, 37, 38]

and in the heterotic standard model context in [28]. In [2 – 4, 37, 38], it was shown that

to compute the complete low-energy spectrum of such vacua one must 1) evaluate the

relevant sheaf cohomologies, 2) find the action of the finite fundamental group on these

spaces and, finally, 3) tensor this with the action of the Wilson line on the associated

representation. The low energy spectrum is the invariant cohomology subspaces under the

resulting group action. This method was applied in [2 – 4] to compute the exact spectrum

of all multiplets transforming non-trivially under the action of the low energy gauge group.

The accompanying natural method of “doublet-triplet” splitting was also discussed. In a

recent paper [41], a formalism was presented that allows one to enumerate and describe

the multiplets transforming trivially under the low energy gauge group, namely, the vector

bundle moduli.

Using the above work, one can construct a heterotic standard model and compute

its entire low-energy spectrum. As mentioned previously, the observable sector spectrum

is very realistic, consisting exclusively of the three chiral families of quarks/leptons (each

family with a right-handed neutrino), two pairs of Higgs-Higgs conjugate fields and a small

number of uncharged geometric and vector bundle moduli. However, finding a realistic

spectrum is far from the end of the story. To demonstrate that the particle physics in these

vacua is realistic, one must construct the exact interactions of these fields in the effective

low energy Lagrangian. These interactions occur as two distinct types. Recall that the

matter part of anN = 1 supersymmetric Lagrangian is completely described in terms of two

functions, the superpotential and the Kahler potential. Of these, the superpotential, being
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a “holomorphic” function of chiral superfields, is much more amenable to computation using

methods of algebraic geometry. The terms of the superpotential itself break into several

different types, such as Higgs µ-terms and Yukawa couplings. In this paper, we begin our

study of holomorphic interactions by presenting a formalism for computing Higgs µ-terms.

We apply this method to calculate the non-vanishing µ-terms in a heterotic standard model.

Specifically, we do the following. In section 2, we review the relevant facts about the

structure of heterotic standard model vacua and present the explicit example which we are

going to use. The formalism for computing the low energy spectrum is briefly discussed

and we give the results for our explicit choice of heterotic standard model vacuum. For

example, the spectrum contains nineteen vector bundle moduli. Higgs µ-terms are then

analyzed and shown to occur as the triple product involving two cohomology groups, one

giving rise to vector bundle moduli (φ) and the other to Higgs (H) and Higgs conjugate

(H̄) fields in the effective low energy theory. For non-vanishing moduli expectation values,

Higgs µ-terms of the form 〈φ〉HH̄ are generated in the superpotential. Section 3 is devoted

to discussing the first Leray spectral sequence, which is associated with the projection of

the covering threefold X̃ onto the base space B2. The Leray decomposition of a sheaf

cohomology group into (p, q) subspaces is discussed and applied to the cohomology spaces

relevant to Higgs µ-terms. It is shown that the triple product is subject to a (p, q) selection

rule which severely restricts the allowed non-vanishing terms. Specifically, we find that only

four out of the nineteen vector bundle moduli can participate in Higgs µ-terms. The second

Leray decomposition, associated with the projection of the space B2 onto its base P
1, is

presented in section 4. The decomposition of any cohomology space into its [s, t] subspaces

is discussed and applied to cohomologies relevant to Higgs µ-terms. We show that µ-terms

are subject to yet another selection rule associated with the [s, t] decomposition. Finally,

it is demonstrated that the subspaces of cohomology that form non-vanishing cubic terms

project non-trivially onto moduli, Higgs and Higgs conjugate fields under the action of the

Z3 × Z3 group. This demonstrates that non-vanishing moduli dependent Higgs µ-terms

proportional to 〈φ〉HH̄ appear in the low energy superpotential of a heterotic standard

model.

Other holomorphic interactions in the superpotential, such as Yukawa couplings and

moduli dependent“µ-terms” for possible exotic vector-like multiplets will be presented in

up-coming publications. The more difficult issue of calculating the Kähler potentials in a

heterotic standard model will be discussed elsewhere.

2. Preliminaries

2.1 Heterotic string on a Calabi-Yau manifold

The observable sector of an E8 ×E8 heterotic standard model vacuum consists of a stable,

holomorphic vector bundle, V , with structure group SU(4) over a Calabi-Yau threefold,

X, with fundamental group Z3 × Z3. Additionally, the vacuum has a Wilson line, W , with

Z3 × Z3 holonomy. The SU(4) instanton breaks the low energy gauge group down to its
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commutant,

E8
SU(4)

// Spin(10) . (2.1)

The Spin(10) group is then spontaneously broken by the holonomy group of W to

Spin(10)
Z3×Z3 // SU(3)C × SU(2)L × U(1)Y × U(1)B−L . (2.2)

In this way, the standard model gauge group emerges in the low energy effective theory

multiplied by an additional U(1) gauge group whose charges correspond to B−L quantum

numbers.

The physical properties of this vacuum are most easily deduced not from X and V

but, rather, from two closely related entities, which we denote by X̃ and Ṽ respectively.

X̃ is a simply-connected Calabi-Yau threefold which admits a freely acting Z3 × Z3 group

action such that

X = X̃
/(

Z3 × Z3

)
. (2.3)

That is, X̃ is a covering space of X. Similarly, Ṽ is a stable, holomorphic vector bundle

with structure group SU(4) over X̃ which is equivariant under the action of Z3 × Z3. Then,

V = Ṽ
/(

Z3 × Z3

)
. (2.4)

The covering space X̃ for a heterotic standard model was discussed in detail in [28]. Here,

it suffices to recall that X̃ is a fiber product

X̃ = B1 ×P1 B2 (2.5)

of two special dP9 surfaces B1 and B2. Thus, X̃ is elliptically fibered over both surfaces

with the projections

π1 : X̃ → B1 , π2 : X̃ → B2 . (2.6)

The surfaces B1 and B2 are themselves elliptically fibered over P
1 with maps

β1 : B1 → P
1 , β2 : B2 → P

1 . (2.7)

Together, these projections yield the commutative diagram

X̃
π2

��?
??

??
?

π1

����
��

��

B1

β1 ��?
??

??
?

B2

β2����
��

��

P
1 .

(2.8)

The invariant homology ring of each special dP9 surface is generated by two Z3 × Z3 invari-

ant curve classes f and t. Using the projections in eq. (2.6), these can be lifted to divisor

classes

τ1 = π−1
1 (t1) , τ2 = π−1

2 (t2) , φ = π−1
1 (f1) = π−1

2 (f2) (2.9)

on X̃. These three classes generate the invariant homology ring of X̃.
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2.2 The gauge bundle

The crucial ingredient in a heterotic standard model is the choice of the vector bundle

Ṽ . These bundles are constructed using a generalization of the method of bundle exten-

sions [25, 27]. Specifically, Ṽ is the extension

0 −→ V2 −→ Ṽ −→ V1 −→ 0 (2.10)

of two rank two bundles V1 and V2 on X̃. A solution for V1 and V2 is as follows. Define

V1 = χ2O eX
(−τ1 + τ2) ⊕ χ2O eX

(−τ1 + τ2)

V2 = O eX
(τ1 − τ2) ⊗ π∗2W2,

(2.11)

where W2 is an equivariant bundle in the extension space of

0 −→ OB2(−2f2) −→W2 −→ χ2OB2(2f2) ⊗ I9 −→ 0 (2.12)

and for the ideal sheaf I9 of 9 points we take a generic Z3 × Z3 orbit. Here, χ2 is one of

the two natural one-dimensional representations of Z3 × Z3 defined by

χ1(g1) = ω , χ1(g2) = 1 ; χ2(g1) = 1 , χ2(g2) = ω , (2.13)

where g1,2 are the generators of the two Z3 factors, χ1,2 are two group characters of Z3 × Z3,

and ω = e
2πi
3 is a third root of unity. The observable sector bundle Ṽ is then an equivariant

element of the space of extensions defined in eq. (2.10). The vector bundle Ṽ passes the

usual non-trivial checks on slope-stability, but we have not given a mathematically rigorous

proof.

Let R be any representation of Spin(10) and U(Ṽ )R the associated tensor product

bundle of Ṽ . Then, each sheaf cohomology space H i(X̃,U(Ṽ )R), i = 0, 1, 2, 3 carries

a specific representation of Z3 × Z3. Similarly, the Wilson line W manifests itself as a

Z3 × Z3 group action on each representation R of Spin(10). As discussed in detail in [4],

the low-energy particle spectrum is given by

ker
(
/DeV

)
=

(
H0

(
X̃,O eX

)
⊗ 45

)Z3×Z3

⊕
(
H1

(
X̃, ad(Ṽ )

)
⊗ 1

)Z3×Z3

⊕

⊕
(
H1

(
X̃, Ṽ

)
⊗ 16

)Z3×Z3

⊕
(
H1

(
X̃, Ṽ ∨

)
⊗ 16

)Z3×Z3

⊕
(
H1

(
X̃,∧2Ṽ

)
⊗ 10

)Z3×Z3

,

(2.14)

where the superscript indicates the invariant subspace under the action of Z3 × Z3. The

invariant cohomology space (H0(X̃,O eX
) ⊗ 45)Z3×Z3 corresponds to gauge superfields in

the low-energy spectrum carrying the adjoint representation of SU(3)C ×SU(2)L×U(1)Y ×

U(1)B−L. The matter cohomology spaces, (H1(X̃, Ṽ )⊗ 16)Z3×Z3 , (H1(X̃, Ṽ ∨)⊗ 16)Z3×Z3

and (H1(X̃,∧2Ṽ ) ⊗ 10)Z3×Z3 were all explicitly computed in [4], leading to three chiral

families of quarks/leptons (each family with a right-handed neutrino [42]), no exotic su-

perfields and two vector-like pairs of Higgs-Higgs conjugate superfields respectively. The

remaining cohomology space, (H1(X̃, ad(Ṽ ))⊗1)Z3×Z3 , was recently computed in [41] and

corresponds to nineteen vector bundle moduli.
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2.3 Cubic terms in the superpotential

In this paper, we will focus on computing Higgs-Higgs conjugate µ-terms. First, note that

in a heterotic standard model Higgs fields arise from eq. (2.14) as zero modes of the Dirac

operator. Hence, they cannot have a “bare” µ-term in the superpotential proportional to

HH̄ with a constant coefficient. However, group theory does allow H and H̄ to have cubic

interactions with the vector bundle moduli of the form φHH̄. If the moduli develop a

non-vanishing vacuum expectation value, then these cubic interactions generate µ-terms of

the form 〈φ〉HH̄ in the superpotential. Hence, in a heterotic standard model we expect

Higgs µ-terms that are linearly dependent on the vector bundle moduli. Classically, no

higher dimensional coupling of moduli to H and H̄ is allowed.

It follows from eq. (2.14) that the 4-dimensional Higgs and moduli fields correspond

to certain ∂̄-closed (0, 1)-forms on X̃ with values in the vector bundle ∧2Ṽ and ad(Ṽ )

respectively. Denote these forms by ΨH , ΨH̄ , and Ψφ. They can be written as

ΨH = ψ
(H)
ῑ,[ab] dz̄

ῑ, ΨH̄ = ψ
(H̄),[ab]
ῑ dz̄ ῑ, Ψφ = [ψ

(φ)
ῑ ] b

a dz̄ ῑ, (2.15)

where a, b are valued in the SU(4) bundle Ṽ and {zι, z̄ ῑ} are coordinates on the Calabi-

Yau threefold X̃. Doing the dimensional reduction of the 10-dimensional Lagrangian yields

cubic terms in the superpotential of the 4-dimensional effective action. It turns out, see [11],

that the coefficient of the cubic coupling φHH̄ is simply the unique way to obtain a number

out of the forms ΨH , ΨH̄ , Ψφ. That is,

W = · · · + λφHH̄ (2.16)

where

λ =

∫

eX

Ω ∧ Tr
[
Ψφ ∧ ΨH ∧ ΨH̄

]
=

=

∫

eX

Ω ∧
(
[ψ

(φ)
ῑ ] b

a ψ
(H)
κ̄,[bc] ψ

(H̄),[ca]

λ̄

)
dz̄ ῑ ∧ dz̄κ̄ ∧ dz̄λ̄

(2.17)

and Ω is the holomorphic (3, 0)-form. Mathematically, we are using the wedge product

together with a contraction of the vector bundle indices to obtain a product

H1
(
X̃, ad(Ṽ )

)
⊗H1

(
X̃,∧2Ṽ

)
⊗H1

(
X̃,∧2Ṽ

)
−→

−→ H3
(
X̃, ad(Ṽ ) ⊗ ∧2Ṽ ⊗ ∧2Ṽ

)
−→ H3

(
X̃,O eX

)
(2.18)

plus the fact that on the Calabi-Yau manifold X̃

H3
(
X̃,O eX

)
= H3

(
X̃,K eX

)
= H3,3

∂̄

(
X̃

)
= H6

(
X̃

)
(2.19)

can be integrated over. If one were to use the heterotic string with the “standard embed-

ding”, then the above product would simplify further to the intersection of certain cycles

in the Calabi-Yau threefold. However, in our case there is no such description.
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Hence, to compute µ-terms, we must first analyze the cohomology groups

H1
(
X̃, ad(Ṽ )

)
, H1

(
X̃,∧2Ṽ

)
, H3

(
X̃,O eX

)
(2.20)

and the action of Z3 × Z3 on these spaces. We then have to evaluate the product in

eq. (2.18). As we will see in the following sections, the two independent elliptic fibrations

of X̃ will force most, but not all, products to vanish.

3. The first elliptic fibration

As discussed in detail in [4], the cohomology spaces on X̃ are obtained by using two Leray

spectral sequences. In this section, we consider the first of these sequences corresponding

to the projection

X̃
π2−→ B2. (3.1)

For any sheaf F on X̃, the Leray spectral sequence tells us that2

H i
(
X̃,F

)
=

p+q=i⊕

p,q

Hp
(
B2, R

qπ2∗F
)
, (3.2)

where the only non-vanishing entries are for p = 0, 1, 2 (since dimC(B2) = 2) and q = 0, 1

(since the fiber of X̃ is an elliptic curve, therefore of complex dimension one). Note that

the cohomologies Hp(B2, R
qπ2∗F) fill out the 2 × 3 tableau3

q=1 H0
(
B2, R

1π2∗F
)

H1
(
B2, R

1π2∗F
)

H2
(
B2, R

1π2∗F
)

q=0 H0
(
B2, π2∗F

)
H1

(
B2, π2∗F

)
H2

(
B2, π2∗F

)

p=0 p=1 p=2

⇒ Hp+q
(
X̃,F

)
, (3.3)

where “⇒ Hp+q
(
X̃,F

)
” reminds us which cohomology group the tableau is computing.

Such tableaux are very useful in keeping track of the elements of Leray spectral sequences.

As is clear from eq. (3.2), the sum over the diagonals yields the desired cohomology of F .

In the following, it will be very helpful to define

Hp
(
B2, R

qπ2∗F
)
≡

(
p, q

∣∣F
)
. (3.4)

Using this abbreviation, the tableau eq. (3.3) simplifies to

q=1
(
0, 1

∣∣F
) (

1, 1
∣∣F

) (
2, 1

∣∣F
)

q=0
(
0, 0

∣∣F
) (

1, 0
∣∣F

) (
2, 0

∣∣F
)

p=0 p=1 p=2

⇒ Hp+q
(
X̃,F

)
. (3.5)

2In all the spectral sequences we are considering in this paper, higher differentials vanish trivially. Hence,

the E2 and E∞ tableaux are equal and we will not distinguish them in the following. Furthermore, there

are no extension ambiguities for C-vector spaces.
3Recall that the zero-th derived push-down is just the ordinary push-down, R0π2∗ = π2∗.
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3.1 The first Leray decomposition of the volume form

Let us first discuss the (p, q) Leray tableau for the sheaf F = O eX
, which is the last term

in eq. (2.20). Since the sheaf is trivial, it immediately follows that

q=1 0 0 1

q=0 1 0 0
p=0 p=1 p=2

⇒ Hp+q
(
X̃,O eX

)
. (3.6)

From eqs. (3.2) and (3.6) we see that

H3
(
X̃,O eX

)
=

(
2, 1

∣∣O eX

)
= 1, (3.7)

where the 1 indicates that H3(X̃,O eX
) is a one-dimensional space carrying the trivial action

of Z3 × Z3.

3.2 The first Leray decomposition of Higgs fields

Now consider the (p, q) Leray tableau for the sheaf F = ∧2Ṽ , which is the second term in

eq. (2.20). This was explicitly computed in [41] and is given by

q=1 0 ρ14 0

q=0 0 ρ14 0
p=0 p=1 p=2

⇒ Hp+q
(
X̃,∧2Ṽ

)
, (3.8)

where ρ14 is the fourteen-dimensional representation

ρ14 =
(
1 ⊕ χ1 ⊕ χ2 ⊕ χ2

1 ⊕ χ2
2 ⊕ χ1χ

2
2 ⊕ χ2

1χ2

)⊕2
(3.9)

of Z3 × Z3. In general, it follows from eq. (3.2) that H1(X̃,∧2Ṽ ) is the sum of the two

subspaces
(
0, 1

∣∣∧2Ṽ
)
⊕

(
1, 0

∣∣∧2Ṽ
)
. However, we see from the Leray tableau eq. (3.8) that

the
(
0, 1

∣∣∧2Ṽ
)

space vanishes. Hence,

H1
(
X̃,∧2Ṽ

)
=

(
1, 0

∣∣∧2Ṽ
)
. (3.10)

Furthermore, eq. (3.8) tells us that

(
1, 0

∣∣∧2Ṽ
)

= ρ14. (3.11)

3.3 The first Leray decomposition of the moduli

The (tangent space to the) moduli space of the vector bundle Ṽ is H1(X̃, ad(Ṽ )), the first

term in eq. (2.20). First, note that ad(Ṽ ) is defined to be the traceless part of Ṽ ⊗ Ṽ ∨. But

the trace is just the trivial line bundle, whose first cohomology group vanishes. Therefore

H1
(
X̃, ad(Ṽ )

)
= H1

(
X̃, Ṽ ⊗ Ṽ ∨

)
−H1

(
X̃,O eX

)

︸ ︷︷ ︸
=0

. (3.12)
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Since the action of the Wilson line on the 1 representation of Spin(10) is trivial, one

need only consider the Z3 × Z3 invariant subspaces of these cohomologies. That is, in

the decomposition of the index of the Dirac operator, eq. (2.14), the moduli fields are

contained in

(
H1

(
X̃, ad(Ṽ )

)
⊗ 1

)Z3×Z3

= H1
(
X̃, ad(Ṽ )

)Z3×Z3

= H1
(
X̃, Ṽ ⊗ Ṽ ∨

)Z3×Z3

. (3.13)

In a previous paper [41], we computed the total number of moduli, but not their (p, q)

degrees. However, this can be calculated in a straightforward manner.

To compute H1(X̃, Ṽ ⊗ Ṽ ∨)Z3×Z3 , recall from [41] that the short exact bundle se-

quence eq. (2.10) generates a complex of intertwined long exact sequences which can be

schematically represented by

_ _ _ _ _ _ _ _ _ _�

�

�

�

�

�
_ _ _ _ _ _ _ _ _ _

H∗
(
V2 ⊗ V ∨

1

)Z3×Z3

��

// H∗
(
Ṽ ⊗ V ∨

1

)Z3×Z3

��

//

_ _ _ _ _ _ _ _ _ _�

�

�

�

�

�
_ _ _ _ _ _ _ _ _ _

H∗
(
V1 ⊗ V ∨

1

)Z3×Z3

��

H∗
(
V2 ⊗ Ṽ ∨

)Z3×Z3

��

// H∗
(
Ṽ ⊗ Ṽ ∨

)Z3×Z3

��

// H∗
(
V1 ⊗ Ṽ ∨

)Z3×Z3

��_ _ _ _ _ _ _ _ _ _�

�

�

�

�

�
_ _ _ _ _ _ _ _ _ _

H∗
(
V2 ⊗ V ∨

2

)Z3×Z3 // H∗
(
Ṽ ⊗ V ∨

2

)Z3×Z3 //

_ _ _ _ _ _ _ _ _ _�

�

�

�

�

�
_ _ _ _ _ _ _ _ _ _

H∗
(
V1 ⊗ V ∨

2

)Z3×Z3

,

(3.14)

where ∗ means the complete cohomology with ∗ = 0, 1, 2, 3 and we have suppressed the

base manifold X̃ for notational simplicity. The (p, q) Leray tableaux for the “corner”

cohomologies, marked by the dashed boxes in eq. (3.14), were calculated in [41]. Actually,

the whole cohomology groups were determined, not just their invariant part. Restricting

to the Z3 × Z3-invariant subspace, we obtain

q=1 0 0 4

q=0 4 0 0
p=0 p=1 p=2

⇒ Hp+q
(
X̃, V1 ⊗ V ∨

1

)Z3×Z3

, (3.15a)

q=1 4 16 0

q=0 0 0 0
p=0 p=1 p=2

⇒ Hp+q
(
X̃, V1 ⊗ V ∨

2

)Z3×Z3

, (3.15b)

q=1 0 0 0

q=0 0 16 4
p=0 p=1 p=2

⇒ Hp+q
(
X̃, V2 ⊗ V ∨

1

)Z3×Z3

, (3.15c)

q=1 0 3 1

q=0 1 3 0
p=0 p=1 p=2

⇒ Hp+q
(
X̃, V2 ⊗ V ∨

2

)Z3×Z3

, (3.15d)

where, as above, the 3, 4, and 16 denote the rank 3, 4, and 16 trivial representation of

Z3 × Z3. Furthermore, the H0 and, by Serre duality, the H3 entries in the (p, q) Leray

tableaux for the remaining cohomology groups in eq. (3.14) were computed in [41], where
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it was found that

q=1 ∗∗ ∗∗ 4

q=0 0 ∗∗ ∗∗

p=0 p=1 p=2

⇒ Hp+q
(
X̃, Ṽ ⊗ V ∨

1

)Z3×Z3

, (3.16a)

q=1 ∗∗ ∗∗ 0

q=0 4 ∗∗ ∗∗

p=0 p=1 p=2

⇒ Hp+q
(
X̃, V1 ⊗ Ṽ ∨

)Z3×Z3

, (3.16b)

q=1 ∗∗ ∗∗ 0

q=0 1 ∗∗ ∗∗

p=0 p=1 p=2

⇒ Hp+q
(
X̃, Ṽ ⊗ V ∨

2

)Z3×Z3

, (3.16c)

q=1 ∗∗ ∗∗ 1

q=0 0 ∗∗ ∗∗

p=0 p=1 p=2

⇒ Hp+q
(
X̃, V2 ⊗ Ṽ ∨

)Z3×Z3

, (3.16d)

q=1 ∗∗ ∗∗ 1

q=0 1 ∗∗ ∗∗

p=0 p=1 p=2

⇒ Hp+q
(
X̃, Ṽ ⊗ Ṽ ∨

)Z3×Z3

. (3.16e)

The cohomology spaces on B2 which are thus far uncalculated are denoted by ∗∗.

Our goal is to compute the entries in the (p, q) Leray tableaux for H1(Ṽ ⊗ Ṽ ∨)Z3×Z3

at the positions (0, 1) and (1, 0) in eq. (3.16e). This can be accomplished as follows. First

consider the Z3 × Z3 invariant part of the lower horizontal long exact sequence in eq. (3.14).

Restricting ourselves to the entries contributing to H1, the exact sequence reads

· · · // H0
(
V1 ⊗ V ∨

2

)Z3×Z3

EDBC

GF@A
// H1

(
V2 ⊗ V ∨

2

)Z3×Z3 // H1
(
Ṽ ⊗ V ∨

2

)Z3×Z3 // H1
(
V1 ⊗ V ∨

2

)Z3×Z3

EDBC

GF δ∨1@A
// H2

(
V2 ⊗ V ∨

2

)Z3×Z3 // · · · .

(3.17)

In [41] it was proven that

H0
(
V1 ⊗ V ∨

2

)Z3×Z3 = 0, δ∨1 = 0. (3.18)

Hence, both coboundary maps vanish and we obtain the short exact sequence

0 // H1(V2 ⊗ V ∨
2 )Z3×Z3

KS
// H1(Ṽ ⊗ V ∨

2 )Z3×Z3

KS
// H1(V1 ⊗ V ∨

2 )Z3×Z3

KS
// 0

0 // 0

3 φ1

// ∗∗

∗∗ φ2

// 4

0
// 0.

(3.19)

– 10 –



J
H
E
P
0
3
(
2
0
0
6
)
0
0
6

Now, on general grounds the coboundary maps in a long exact sequence increase the

cohomology degree, while the interior maps preserve the cohomology degree. In particular,

the maps φ1 and φ2 in eq. (3.19) must preserve the (p, q) degrees. The (0, 1) and (1, 0)

entries in the H∗(Ṽ ⊗ V ∨
2 )Z3×Z3 Leray tableau can now be evaluated using the following

general formula. Consider an exact sequence of linear spaces

. . . −→ U
m1−→ V −→ W −→ X

m2−→ Y −→ . . . , (3.20)

where m1 and m2 are coboundary maps. Then

dimC(W) = dimC(V) + dimC(X ) − rank(m1) − rank(m2). (3.21)

This formula applies to any linear spaces, such as entire cohomology groups or their in-

dividual (p, q) Leray subspaces. Using eq. (3.21) for the (0, 1) and (1, 0) Leray degrees

separately in eq. (3.19), we obtain the desired entries in the Leray tableau

q=1 4

q=0 3
p=0 p=1 p=2

⇒ Hp+q
(
X̃, Ṽ ⊗ V ∨

2

)Z3×Z3

. (3.22)

Second, consider the upper horizontal long exact sequence in eq. (3.14). Restricting our-

selves to the entries contributing to H1, this is given by

H0(V1⊗V ∨

1 )Z3×Z3
KS

d2 // H1(V2⊗V ∨

1 )Z3×Z3
KS

// H1(eV ⊗V ∨

1 )Z3×Z3
KS

// H1(V1⊗V ∨

1 )Z3×Z3
KS

// · · ·

4

d2|(0,1) //

d2|(1,0)

//

0

16
// ∗∗

∗∗
// 0

0
// · · · .

(3.23)

The coboundary map d2 on the left was shown in [41] to have rank(d2) = 4. In the context

of the (p, q) Leray tableaux, it decomposes as

rank
(
d2|(0,1) : 4 → 0

)
= 0, rank

(
d2|(1,0) : 4 → 16

)
= 4. (3.24)

Again using eq. (3.21) for the (0, 1) and (1, 0) Leray degrees separately in eq. (3.23), we

obtain the desired entries in the Leray tableau

q=1 0

q=0 12
p=0 p=1 p=2

⇒ Hp+q
(
X̃, Ṽ ⊗ V ∨

1

)Z3×Z3

. (3.25)

From the results in eqs. (3.22) and (3.25), we can finally compute the (p, q) Leray subspaces

that determine H1(Ṽ ⊗ Ṽ ∨)Z3×Z3 in eq. (3.16e) using the middle vertical exact sequence

of eq. (3.14)

· · ·
d3 // H1(Ṽ ⊗ V ∨

1 )Z3×Z3

KS
// H1(Ṽ ⊗ Ṽ ∨)Z3×Z3

KS
// H1(Ṽ ⊗ V ∨

2 )Z3×Z3

KS

δ2 // · · ·

· · · // 0

12
// ∗∗

∗∗
// 4

3
// · · · .

(3.26)
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In [41], we calculated both coboundary maps d3 and δ2. It was found that they both vanish,

that is

d3 = δ2 = 0. (3.27)

Using these results and eq. (3.21) for each of the two H1 Leray subspace sequences in

eq. (3.26), we find that the H1 entries in the Leray tableau for H∗(X̃, Ṽ ⊗ Ṽ ∨)Z3×Z3 are

q=1 4

q=0 15
p=0 p=1 p=2

⇒ Hp+q
(
X̃, Ṽ ⊗ Ṽ ∨

)Z3×Z3

. (3.28)

Note that

h1(X̃, Ṽ ⊗ Ṽ ∨)Z3×Z3 = 4 + 15 = 19, (3.29)

which is consistent with the conclusion in [41] that there are a total of nineteen vector

bundle moduli. Now, however, we have determined the (p, q) decomposition of H1(X̃, Ṽ ⊗

Ṽ ∨)Z3×Z3 into the subspaces

H1
(
X̃, Ṽ ⊗ Ṽ ∨

)Z3×Z3

=
(
0, 1

∣∣Ṽ ⊗ Ṽ ∨
)Z3×Z3 ⊕

(
1, 0

∣∣Ṽ ⊗ Ṽ ∨
)Z3×Z3 , (3.30)

where (
0, 1

∣∣Ṽ ⊗ Ṽ ∨
)Z3×Z3 = 4,

(
1, 0

∣∣Ṽ ⊗ Ṽ ∨
)Z3×Z3 = 15 (3.31)

respectively.

3.4 The (p,q) selection rule

Having computed the decompositions of H3(X̃,O eX
), H1(X̃,∧2Ṽ ) and H1(X̃, ad(Ṽ ))Z3×Z3

into their (p, q) Leray subspaces, we can now analyze the (p, q) components of the triple

product

H1
(
X̃, Ṽ ⊗ Ṽ ∨

)Z3×Z3

⊗H1
(
X̃,∧2Ṽ

)
⊗H1

(
X̃,∧2Ṽ

)
−→ H3

(
X̃,O eX

)
(3.32)

given in eq. (2.18). Inserting eqs. (3.10) and (3.30), we see that

H1
(
X̃, Ṽ ⊗ Ṽ ∨

)Z3×Z3

⊗H1
(
X̃,∧2Ṽ

)
⊗H1

(
X̃,∧2Ṽ

)
=

=
((

0, 1
∣∣Ṽ ⊗ Ṽ ∨

)
⊕

(
1, 0

∣∣Ṽ ⊗ Ṽ ∨
))

⊗
(
1, 0

∣∣∧2Ṽ
)
⊗

(
1, 0

∣∣∧2Ṽ
)

=

=
((

0,1
∣∣eV ⊗eV ∨

)Z3×Z3
⊗
(
1,0

∣∣∧2 eV
)
⊗
(
1,0

∣∣∧2 eV
))

︸ ︷︷ ︸
total (p, q) degree = (2,1)

⊕
((

1,0
∣∣eV ⊗eV ∨

)Z3×Z3
⊗
(
1,0

∣∣∧2 eV
)
⊗
(
1,0

∣∣∧2 eV
))

︸ ︷︷ ︸
total (p, q) degree = (3,0)

.

(3.33)

Because of the (p, q) degree, only the first term can have a non-zero product in

H3
(
X̃,O eX

)
=

(
2, 1

∣∣O eX

)
, (3.34)
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see eq. (3.7). It follows that out of the H1(Ṽ ⊗ Ṽ ∨)Z3×Z3 = 19 vector bundle moduli, only

(
0, 1

∣∣Ṽ ⊗ Ṽ ∨
)Z3×Z3 = 4 (3.35)

will form non-vanishing Higgs-Higgs conjugate µ-terms. The remaining fifteen moduli in

the
(
1, 0

∣∣Ṽ ⊗ Ṽ ∨
)Z3×Z3 component have the wrong (p, q) degree to couple to a Higgs-Higgs

conjugate pair. We refer to this as the (p, q) Leray degree selection rule. We conclude that

the only non-zero product in eq. (3.32) is of the form

(
0, 1

∣∣Ṽ ⊗ Ṽ ∨
)Z3×Z3 ⊗

(
1, 0

∣∣∧2Ṽ
)
⊗

(
1, 0

∣∣∧2Ṽ
)
−→

(
2, 1

∣∣O eX

)
. (3.36)

Roughly what happens is the following. The Leray spectral sequence decomposes differ-

ential forms into the number p of legs in the direction of the base and the number q of

legs in the fiber direction. The holomorphic (3, 0)-form Ω has two legs in the base and one

leg in the fiber direction. According to eq. (3.10), both 1-forms ΨH , ΨH̄ corresponding to

Higgs and Higgs conjugate have their one leg in the base direction. Therefore, the wedge

product in eq. (2.17) can only be non-zero if the modulus 1-form Ψφ has its leg in the fiber

direction, which only 4 out of the 19 moduli satisfy.

We conclude that due to a selection rule for the (p, q) Leray degree, the Higgs µ-

terms in the effective low energy theory can involve only four of the nineteen vector bundle

moduli.

4. The second elliptic fibration

So far, we only made use of the fact that our Calabi-Yau manifold is an elliptic fibration over

the base B2. But the dP9 surface B2 is itself elliptically fibered over a P
1. Consequently,

there is yet another selection rule coming from the second elliptic fibration.

Therefore, we now consider the second Leray spectral sequence corresponding to the

projection

B2
β2
−→ P

1. (4.1)

For any sheaf F̃ on B2, the Leray sequence tells us that

Hp
(
B2, F̃

)
=

s+t=p⊕

s,t

Hs
(
P

1, Rtβ2∗F̃
)
, (4.2)

where the only non-vanishing entries are for s = 0, 1 (since dimC P
1 = 1) and t = 0, 1 (since

the fiber of B2 is an elliptic curve). The cohomologies Hs(P1, Rtβ2∗F̃) fill out the 2 × 2

Leray tableau

t=1 H0(P1, R1β2∗F̃) H1(P1, R1β2∗F̃)

t=0 H0(P1, β2∗F̃) H1(P1, β2∗F̃)

s=0 s=1

⇒ Hs+t
(
B2, F̃

)
. (4.3)
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As is clear from eq. (4.2), the sum over the diagonals yields the desired cohomology of F̃ .

Note that to evaluate the product eq. (3.36), we need the [s, t] Leray tableaux for

F̃ = R1π2∗

(
Ṽ ⊗ Ṽ ∨

)
, π2∗

(
∧2 Ṽ

)
, R1π2∗

(
O eX

)
. (4.4)

In the following, it will be useful to define

Hs

(
P

1, Rtβ2∗

(
Rqπ2∗

(
F

)))
≡

[
s, t

∣∣q,F
]
. (4.5)

One can think of
[
s, t

∣∣q,F
]

as the subspace of H∗
(
X̃,F

)
that can be written as forms with

q legs in the π2-fiber direction, t legs in the β2-fiber direction, and s legs in the base P
1

direction.

4.1 The second Leray decomposition of the volume form

Let us first discuss the [s, t] Leray tableau for the sheaf F̃ = R1π2∗

(
O eX

)
. Since R1π2∗(O eX

)

= KB2 , the canonical line bundle of B2, it follows immediately that

t=1 0 1

t=0 0 0
s=0 s=1

⇒ Hs+t
(
B2, R

1π2∗

(
O eX

))
. (4.6)

In our notation, this means that

H2
(
B2, R

1π2∗

(
O eX

))
=

[
1, 1

∣∣1,O eX

]
(4.7)

has pure [s, t] = [1, 1] degree. We see from eqs. (4.6) and (4.2) that

H3
(
X̃,O eX

)
=

(
2, 1

∣∣O eX

)
=

[
1, 1

∣∣1,O eX

]
= 1. (4.8)

4.2 The second Leray decomposition of Higgs fields

Now consider the [s, t] Leray tableau for the sheaf F̃ = π2∗

(
∧2 Ṽ

)
. This was explicitly

computed in [41] and is given by

t=1 (1 ⊕ χ1 ⊕ χ2
1 ⊕ χ2

1 ⊕ χ2
2 ⊕ χ1χ

2
2)

⊕2 0

t=0 0 (χ2
1χ2)

⊕2

s=0 s=1

⇒ Hs+t
(
B2, π2∗

(
∧2 Ṽ

))
. (4.9)

This means that the 14 copies of the 10 of Spin(10) given in eq. (3.11) split as

H1
(
X̃,∧2Ṽ

)
=

(
1, 0

∣∣∧2Ṽ
)

=
[
0, 1

∣∣0,∧2Ṽ
]
⊕

[
1, 0

∣∣0,∧2Ṽ
]
, (4.10)

where
[
0, 1

∣∣0,∧2Ṽ
]

=
(
1 ⊕ χ1 ⊕ χ2

1 ⊕ χ2
1 ⊕ χ2

2 ⊕ χ1χ
2
2

)⊕2

[
1, 0

∣∣0,∧2Ṽ
]

=
(
χ2

1χ2

)⊕2
.

(4.11)

Note that [
0, 1

∣∣0,∧2Ṽ
]
⊕

[
1, 0

∣∣0,∧2Ṽ
]

= ρ14 (4.12)

in eq. (3.9), as it must.
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4.3 The second Leray decomposition of the moduli

Finally, let us consider the [s, t] Leray tableau for the moduli. We have already seen that,

due to the (p, q) selection rule, only

(
0, 1

∣∣Ṽ ⊗ Ṽ ∨
)Z3×Z3 = 4 ⊂ H1

(
X̃, Ṽ ⊗ Ṽ ∨

)Z3×Z3

(4.13)

out of the 19 moduli can occur in the Higgs-Higgs conjugate µ-term. Therefore, we are

only interested in the [s, t] decomposition of this subspace, that is, the degree 0 cohomology

of the sheaf R1π2∗

(
Ṽ ⊗ Ṽ ∨

)
. The corresponding Leray tableau is given by

t=1

t=0 4
s=0 s=1

⇒ Hs+t
(
B2, R

1π2∗

(
Ṽ ⊗ Ṽ ∨

))Z3×Z3

, (4.14)

where the empty boxes are of no interest for our purposes. It follows that the 4 moduli of

interest have [s, t] degree [0, 0],

(
0, 1

∣∣Ṽ ⊗ Ṽ ∨
)Z3×Z3 =

[
0, 0

∣∣1, Ṽ ⊗ Ṽ ∨
]Z3×Z3 = 4. (4.15)

4.4 The [s, t] selection rule

Having computed the decompositions of the relevant cohomology spaces into their [s, t]

Leray subspaces, we can now calculate the triple product eq. (2.18). The (p, q) selection

rule dictates that the only non-zero product is of the form eq. (3.36). Now split each term

in this product into its [s, t] subspaces, as given in eqs. (4.8), (4.11), and (4.15) respectively.

The result is

[
0, 0

∣∣1, Ṽ ⊗ Ṽ ∨
]Z3×Z3 ⊗

([
0, 1

∣∣0,∧2Ṽ
]
⊕

[
1, 0

∣∣0,∧2Ṽ
])

⊗

⊗
([

0, 1
∣∣0,∧2Ṽ

]
⊕

[
1, 0

∣∣0,∧2Ṽ
])

−→
[
1, 1

∣∣1,O eX

]
. (4.16)

Clearly, this triple product vanishes by degree unless we choose the
[
0, 1

∣∣0,∧2Ṽ
]

from

one of the
(
1, 0

∣∣∧2Ṽ
)

subspaces and
[
1, 0

∣∣0,∧2Ṽ
]

from the other. In this case, eq. (4.16)

becomes

[
0, 0

∣∣1, Ṽ ⊗ Ṽ ∨
]Z3×Z3 ⊗

[
1, 0

∣∣0,∧2Ṽ
]
⊗

[
0, 1

∣∣0,∧2Ṽ
]
−→

[
1, 1

∣∣1,O eX

]
, (4.17)

which is consistent.

4.5 Wilson lines

Recall that we have, in addition to the SU(4) instanton, also a Wilson line4 turned on. Its

effect is to break the Spin(10) gauge group down to the desired SU(3)C ×SU(2)L×U(1)Y ×

U(1)B−L gauge group. Each fundamental matter field in the 10 can be broken to a Higgs

4In fact, we switch on a separate Wilson line for both Z3 factors in π1(X) = Z3 × Z3.
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field, a color triplet, or projected out. In particular, we are going to choose the Wilson line

W so that its Z3 × Z3 action on a 10 representation of Spin(10) is given by

10 =
(
χ1χ

2
2H ⊕ χ1χ2C

)
⊕

(
χ2

1χ2H̄ ⊕ χ2
1χ

2
2C̄

)
, (4.18)

where

H =
(
1,2, 3, 0

)
, C =

(
3,1,−2,−2

)
(4.19)

are the Higgs and color triplet representations of SU(3)C × SU(2)L × U(1)Y × U(1)B−L

respectively.5 Tensoring this with the cohomology space H1
(
X̃,∧2Ṽ

)
, we find the invariant

subspace under the combined Z3 × Z3 action on the cohomology space and the Wilson line

to be [
H1

(
X̃,∧2Ṽ

)
⊗ 10

]Z3×Z3

= span
{
H1, H2, H̄1, H̄2

}
. (4.20)

Hence, we find precisely two copies of Higgs and two copies of Higgs conjugate fields survive

the Z3 × Z3 quotient. As required for any realistic model, all color triplets are projected

out.

The new information now are the (p, q) and [s, t] degrees of the Higgs fields. Using the

decomposition of H1
(
X̃,∧2Ṽ

)
, we find

[
H1

(
X̃,∧2Ṽ

)
⊗ 10

]Z3×Z3

=
[(

1, 0
∣∣∧2Ṽ

)
⊗ 10

]Z3×Z3

=

=
[[

0, 1
∣∣0,∧2Ṽ

]
⊗ 10

]Z3×Z3

︸ ︷︷ ︸
=span{H̄1,H̄2}

⊕
[[

1, 0
∣∣0,∧2Ṽ

]
⊗ 10

]Z3×Z3

︸ ︷︷ ︸
=span{H1,H2}

. (4.21)

The resulting degrees under the two Leray spectral sequences of the Higgs and Higgs

conjugate fields are listed in table 1.

Field (p, q) [s, t]

H1, H2 (1, 0) [1, 0]

H̄1, H̄2 (1, 0) [0, 1]

Table 1: Degrees of the Higgs fields.

5. Higgs µ-terms

To conclude, we analyzed cubic terms in the superpotential of the form

λiabφiHaH̄b, (5.1)

where

5The attentive reader will note that the Z3 × Z3 action of the Wilson line presented here differs from

that given in [41]. Be that as it may, the low energy spectra of the two different actions are identical.

However, for the Z3 × Z3 action presented in this paper, there are non-vanishing Higgs µ-terms whereas all

µ-terms vanish identically using the Wilson line action given in [41].
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• λiab is a coefficient determined by the integral eq. (2.17),

• φi, i = 1, . . . , 19 are the vector bundle moduli,

• Ha, a = 1, 2 are the two Higgs fields, and

• H̄b, b = 1, 2 are the two Higgs conjugate fields.

We found that they are subject to two independent selection rules coming from the two

independent torus fibrations. The first selection rule is that the total (p, q) degree is (2, 1).

According to table 1, HaH̄b already has (p, q) degree (2, 0). Hence the moduli field φi must

have degree (0, 1). In eq. (3.31) we found that only 4 moduli φi, i = 1, . . . , 4, have the right

(p, q) degree. In other words, the majority of the coefficients vanishes,

λiab = 0, i = 5, . . . , 19. (5.2)

In principle, the second selection rule imposes independent constraints. It states that

the total [s, t] degree has to be [1, 1]. We showed that the allowed cubic terms φiHaH̄b,

i = 1, . . . , 4, all have the correct degree [1, 1]. Therefore, the (p, q) and [s, t] selection

rule allow µ-terms involving 4 out of the 19 vector bundle moduli. Cubic terms involving

Higgs-Higgs conjugate fields and any of the remaining 15 moduli are forbidden in the

superpotential.

When the moduli develop non-zero vacuum expectation values these superpotential

terms generate Higgs µ-terms of the form

λiab 〈φi〉HaH̄b, i = 1, . . . , 4, a = 1, 2, b = 1, 2. (5.3)

Moreover, the coefficient λiab has no interpretation as an intersection number, and therefore

has no reason to be constant over the moduli space. In general, we expect it to depend on

the moduli. Of course, to explicitly compute this function one needs the Kähler potential

which determines the correct normalization for all fields.
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